Contents
clc;
clear;
format compact;
Example Cable Fault Calculation - version
This calculation provides an example of a cable fault calculation
Cable Inputs
The cable is assumed to be XLPE single core copper, 185 mm, installed flat, spaced one diameter apart and 52 m in length.
Under the installation conditions the positive sequence impedance, Z1 and zero sequence impedance Z0 are calculatd and found to be:
Z1 = 0.007589471899785190 + 0.0072621169251118863i;
Z0 = 0.024855569961970723 + 0.0054850851667301833i;
U = 400/sqrt(3);
Ik3 = 10000; pfk3 = 0.25;
Ik0 = 9800; pfk0 = 0.25;
Ik3 = Ik3 * pfk3 - Ik3 * sin(acos(pfk3))* 1i;
Ze3 = U/Ik3;
Ik0 = Ik0 * pfk0 - Ik0 * sin(acos(pfk0))* 1i;
Ze0 = U/Ik0;
disp(['Phase fault source impedance = ', num2str(Ze3, '%0.4f' ),' ohm'] );
disp(['Earth fault source impedance = ', num2str(Ze0, '%0.4f' ),' ohm'] );
Phase fault source impedance = 0.0058+0.0224i ohm
Earth fault source impedance = 0.0059+0.0228i ohm
Load End Fault Levels
To calculate the load end fault levels we use the total impedance (source + cable). In addition, IEC 60609 requires the user of a C factor, which for low voltage cables is Cmax=1.05, Cmin=0.95. For the phase fault we have:
Cmax=1.05; Cmin=0.95;
Zt3 = Ze3 + Z1;
If3 = Cmax*U/Zt3;
disp(['Phase fault load end, maximum = ', num2str(abs(If3)/1000, '%0.2f' ),' kA', ...
'(@ ', num2str(cos(angle(If3)), '%0.2f' ),' pf)'] );
If3 = Cmin*U/Zt3;
disp(['Phase fault load end, minimum = ', num2str(abs(If3)/1000, '%0.2f' ),' kA', ...
'(@ ', num2str(cos(angle(If3)), '%0.2f' ),' pf)'] );
Zt0 = Ze0 + Z1+ Z0;
If0 = Cmax*U/Zt0;
disp(['Earth fault load end, maximum = ', num2str(abs(If0)/1000, '%0.2f' ),' kA', ...
'(@ ', num2str(cos(angle(If0)), '%0.2f' ),' pf)'] );
If0 = Cmin*U/Zt0;
disp(['Earth fault load end, minimum = ', num2str(abs(If0)/1000, '%0.2f' ),' kA', ...
'(@ ', num2str(cos(angle(If0)), '%0.2f' ),' pf)'] );
Phase fault load end, maximum = 7.46 kA(@ 0.41 pf)
Phase fault load end, minimum = 6.75 kA(@ 0.41 pf)
Earth fault load end, maximum = 4.64 kA(@ 0.73 pf)
Earth fault load end, minimum = 4.20 kA(@ 0.73 pf)
BS 7671 Earth Fault Loop Impedance
BS 7671 regulation 411.4.5 has a requirement to use a minimum voltage factor Cmin in the calculation of earth fault loop impedance. The value to use for Cmin is given as 0.95.ce
Cmin = 0.95;
If0 = Cmin*U/Zt0;
disp(['Earth fault load end = ', num2str(abs(If0)/1000, '%0.2f' ),' kA', ...
'(@ ', num2str(cos(angle(If0)), '%0.2f' ),' pf) - considering Cmin'] );
disp(['Earth fault loop impedance = ', num2str(abs(Zt0), '%0.4f' ),' ohm'] );
Earth fault load end = 4.20 kA(@ 0.73 pf) - considering Cmin
Earth fault loop impedance = 0.0523 ohm
Additional External Conductor
Also consider the case where an additional external conductor is added into the circuit to reduce the overall earth fault look impedance. Select a 50 mm2 copper conductor, with an impedance of 0.495e-3 + j0.135e-3 ohm/meter. Assume the CPC to 50 m in length:
Z2 = ( 0.495e-3 + 0.135e-3)*50;
Z2 = (Z2*Z0) / (Z2 + Z0);
Zs = Ze0 + Z1+ Z2;
If0 = Cmax*U/Zs;
disp(['Earth fault load end, maximum = ', num2str(abs(If0)/1000, '%0.2f' ),' kA', ...
'(@ ', num2str(cos(angle(If0)), '%0.2f' ),' pf)'] );
If0 = Cmin*U/Zs;
disp(['Earth fault load end, minimum = ', num2str(abs(If0)/1000, '%0.2f' ),' kA', ...
'(@ ', num2str(cos(angle(If0)), '%0.2f' ),' pf)'] );
disp(['Earth fault loop impedance = ', num2str(abs(Z2), '%0.4f' ),' ohm'] );
Earth fault load end, maximum = 5.77 kA(@ 0.65 pf)
Earth fault load end, minimum = 5.22 kA(@ 0.65 pf)
Earth fault loop impedance = 0.0142 ohm