Use the link on the left to access our cable sizing application. Manage and size all your cables, from low voltage to 33 kV.
clc; clear; format compact;
This calculation provides an example of a cable fault calculation
The cable is assumed to be XLPE single core copper, 185 mm, installed flat, spaced one diameter apart and 52 m in length.
Under the installation conditions the positive sequence impedance, Z1 and zero sequence impedance Z0 are calculatd and found to be:
Z1 = 0.007589471899785190 + 0.0072621169251118863i; Z0 = 0.024855569961970723 + 0.0054850851667301833i; % The system operation voltage is 400 V three phase, and the source % fault levels at the cable are 10 kA at 0.25 pf phase fault and % 9.8 ka, 0.25 pf earth fault. U = 400/sqrt(3); % we use the phase voltage for calculations Ik3 = 10000; pfk3 = 0.25; % phase fault level Ik0 = 9800; pfk0 = 0.25; % earth fault level % To be able to use the fault levels, these need to be converted to complex % form and then the impedance found. The current will be lagging the % voltage,% which gives Ik3 = Ik3 * pfk3 - Ik3 * sin(acos(pfk3))* 1i; % convert to complex Ze3 = U/Ik3; % convert to impedance Ik0 = Ik0 * pfk0 - Ik0 * sin(acos(pfk0))* 1i; % convert to complex Ze0 = U/Ik0; disp(['Phase fault source impedance = ', num2str(Ze3, '%0.4f' ),' ohm'] ); disp(['Earth fault source impedance = ', num2str(Ze0, '%0.4f' ),' ohm'] );
Phase fault source impedance = 0.0058+0.0224i ohm Earth fault source impedance = 0.0059+0.0228i ohm
To calculate the load end fault levels we use the total impedance (source + cable). In addition, IEC 60609 requires the user of a C factor, which for low voltage cables is Cmax=1.05, Cmin=0.95. For the phase fault we have:
Cmax=1.05; Cmin=0.95; Zt3 = Ze3 + Z1; If3 = Cmax*U/Zt3; disp(['Phase fault load end, maximum = ', num2str(abs(If3)/1000, '%0.2f' ),' kA', ... '(@ ', num2str(cos(angle(If3)), '%0.2f' ),' pf)'] ); If3 = Cmin*U/Zt3; disp(['Phase fault load end, minimum = ', num2str(abs(If3)/1000, '%0.2f' ),' kA', ... '(@ ', num2str(cos(angle(If3)), '%0.2f' ),' pf)'] ); % % And for the earth fault: Zt0 = Ze0 + Z1+ Z0; If0 = Cmax*U/Zt0; disp(['Earth fault load end, maximum = ', num2str(abs(If0)/1000, '%0.2f' ),' kA', ... '(@ ', num2str(cos(angle(If0)), '%0.2f' ),' pf)'] ); If0 = Cmin*U/Zt0; disp(['Earth fault load end, minimum = ', num2str(abs(If0)/1000, '%0.2f' ),' kA', ... '(@ ', num2str(cos(angle(If0)), '%0.2f' ),' pf)'] );
Phase fault load end, maximum = 7.46 kA(@ 0.41 pf) Phase fault load end, minimum = 6.75 kA(@ 0.41 pf) Earth fault load end, maximum = 4.64 kA(@ 0.73 pf) Earth fault load end, minimum = 4.20 kA(@ 0.73 pf)
BS 7671 regulation 411.4.5 has a requirement to use a minimum voltage factor Cmin in the calculation of earth fault loop impedance. The value to use for Cmin is given as 0.95.ce
Cmin = 0.95; If0 = Cmin*U/Zt0; disp(['Earth fault load end = ', num2str(abs(If0)/1000, '%0.2f' ),' kA', ... '(@ ', num2str(cos(angle(If0)), '%0.2f' ),' pf) - considering Cmin'] ); disp(['Earth fault loop impedance = ', num2str(abs(Zt0), '%0.4f' ),' ohm'] );
Earth fault load end = 4.20 kA(@ 0.73 pf) - considering Cmin Earth fault loop impedance = 0.0523 ohm
Also consider the case where an additional external conductor is added into the circuit to reduce the overall earth fault look impedance. Select a 50 mm2 copper conductor, with an impedance of 0.495e-3 + j0.135e-3 ohm/meter. Assume the CPC to 50 m in length:
Z2 = ( 0.495e-3 + 0.135e-3)*50; % % Overall earth fault loop impedance Z2, is that of the external CPC in % parallel with the Z0 due to the cable armouring: Z2 = (Z2*Z0) / (Z2 + Z0); Zs = Ze0 + Z1+ Z2; If0 = Cmax*U/Zs; disp(['Earth fault load end, maximum = ', num2str(abs(If0)/1000, '%0.2f' ),' kA', ... '(@ ', num2str(cos(angle(If0)), '%0.2f' ),' pf)'] ); If0 = Cmin*U/Zs; disp(['Earth fault load end, minimum = ', num2str(abs(If0)/1000, '%0.2f' ),' kA', ... '(@ ', num2str(cos(angle(If0)), '%0.2f' ),' pf)'] ); disp(['Earth fault loop impedance = ', num2str(abs(Z2), '%0.4f' ),' ohm'] );
Earth fault load end, maximum = 5.77 kA(@ 0.65 pf) Earth fault load end, minimum = 5.22 kA(@ 0.65 pf) Earth fault loop impedance = 0.0142 ohm
Published with MATLAB® R2015a